Partial graph design embeddings and related problems
نویسندگان
چکیده
منابع مشابه
Graph Searching and Related Problems
Suppose that there is a robber hiding on vertices or along edges of a graph or digraph. Graph searching is concerned with finding the minimum number of searchers required to capture the robber. We survey the major results of graph searching problems, focusing on algorithmic, structural, and probabilistic aspects of the field.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Graph modification problems related to graph classes
i Acknowledgements The first person I need to thank is my supervisor Pinar Heggernes. Without her guidance, encouragement and scolding from time to time, this work would not exist. Thank you for taking me as your student, teaching me so much and believing in me from the very start. I have never told you how much this meant to me, but I hope this thesis can make up for at least some of it. These...
متن کاملCrossing Minimization within Graph Embeddings Crossing Minimization within Graph Embeddings
We propose a novel optimization-based approach to embedding heterogeneous high-dimensional data characterized by a graph. The goal is to create a two-dimensional visualization of the graph structure such that edge-crossings are minimized while preserving proximity relations between nodes. This paper provides a fundamentally new approach for addressing the crossing minimization criteria that exp...
متن کاملGraph Ear Decompositions and Graph Embeddings
Ear decomposition of a graph has been extensively studied in relation to graph connectivity. In this paper, a connection of ear decomposition to graph embeddings is exhibited. It is shown that constructing a maximum-paired ear decomposition of a graph and constructing a maximum-genus embedding of the graph are polynomial-time equivalent. Applications of this connection are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2006
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700038715